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A fast multigrid approach is described for the task of calculating Jo K(x, v) u(v) dy for each 
XER E W“. Discretizing .Q by an equidistant grid with n points and meshsize h, and 
approximating the integrations to O(h2”) accuracy, it is shown that the complexity of this 
calculation can be reduced from O(n2) to O(sn), provided the kernel K is sufficiently smooth. 
For potential-type kernels, the complexity is reduced to O(sn log n). Corresponding integral 
equations can be solved to a similar accuracy in basically the same amount of work, using a 
special kind of distributed relaxation in a multigrid algorithm. One- and two-dimensional 
numerical tests, and theoretical derivations of optimal strategies, are reported. The method is 
applicable to the task of multiplying by any matrix with appropriate smoothness properties, 
including most types of many body interactions. f? 1990 Academic Press. Inc. 

1. INTRODUCTION 

In this work we will describe an approach to reduce the complexity of multi- 
integration. By multi-integration (with kernel K, over domain Q) we mean the task 
of calculating the function 

w(x)= j-Q K(x, Y) 4~) &, XESZCRd, (1) 

given the function U. The discrete analog of this task is the multiplication of a 
vector by a dense (not sparse) matrix having certain smoothness properties. Such 
numerical tasks arise in many important problems in mathematics, physics, and 
engineering, including: integro-differential equations, integral equations, panel 
methods, boundary element methods, plasma physics, problems in elasticity, 
gravitating masses, vortex schemes, coulombic molecular interactions, and other 
many-body long range interactions. 
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under Grants AFOSR-86-0126 and AFOSR-X6-0127, by the Dutch “Niels Stensen Stichting,” and by the 
National Science Foundation under Grant NSF DMS-8704169. 

0021-9991/90 $3.00 
Copyright 0 1990 by Academic Press, Inc 
All rights of reproduction in any form reserved 

348 



MULTILEVEL MATRIX MULTIPLICATION 349 

When the domain Q is discretized by a grid with meshsize h and n = O(hpd) 
points, the calculation of a single integral will ,cost O(n) operations, thus the 
calculation of w(x) for each of the n gridpoints will require O(n’) operations. Since 
for various problems a large number of points IZ is essential, it is our aim to reduce 
the complexity of this multi-integration, in order to avoid excessive computing 
times. This can be obtained by performing part of the integration on coarser grids, 
in a way that keeps the added error smaller than the original line grid discretization 
error, by exploiting the smoothness of the kernel K. Specifically, if the kernel K has 
4s bounded derivatives, we will show that the multi-integration can be calculated 
to accuracy E = O(h2”) = O(C’“‘~) in 0( sn o era ions. For a wider class of kernels, ) p t 
including the potential type, the number of required operations will be shown to be 
O(sn log n) = O(n log( l/E)). 

The basic idea of the method was outlined before in [4, Sect. 8.61 and a brief 
description was given in [6]. Similar attempts to reduce the complexity of multi- 
integration have been reported by Rokhlin [ 131, Nowak and Hackbusch [lo], and 
other related approaches existed earlier (see survey in [ 1 I). Relevant references also 
include [2, 3, 7, 91, which use hierarchical solvers for many-body simulations, and 
[ll, 121, which exhibit FFT-based schemes for the solution of integral equations. 
All these approaches, however, are either of limited accuracy or restricted to poten- 
tial-type kernels, for which far-field expansions are used in order to obtain the 
desired reduction in complexity. In the method presented below, the smoothness of 
K is exploited generally and directly, by replacing some of its values by interpola- 
tions from coarser grids. High-order accuracy is obtained by high-order interpola- 
tions requiring no potential theory (which is indeed unavailable in various physical 
systems). 

The multigrid solver for integral equations described here (Section 5) introduces 
several additional algorithmic innovations, such as distributed relaxation schemes 
of arbitrary “order,” and ways to use multi-integrations very sparingly. In fact, the 
solution, to the accuracy of the discretization error, can be obtained in an amount 
of work only a fraction more than that of one multi-integration. For potential-type 
kernels, a solution to accuracy E = O(h’“) = O(C~“‘~) requires O(sn(s + log n)) = 
O(n log( l/s)) operations, compared to O(n(log( 1/s))3) operations in [13]. (There is 
usually no point in solving the discrete equations to any accuracy E substantially 
below the O(h*‘) discretization error; but if one still wants to do so, the approach 
presented here would require O(n(log(l/s))*) operations, while the complexity of 
[13] would remain O(n(log( l/~))~). Thus, if the desired precision E is fixed-at the 
machine precision, for example-both methods have O(n) complexity. An extra 
log n factor appears in the complexity of the present method, and a (log n)3 factor 
would similarly appear for the method of [3], if the relation between the needed 
precision and the discretization error is accounted for.) 

A forthcoming work, on implementing the present approach for the fast calcula- 
tion of many body interactions and their steady states, is briefly described in 
Section 6.2. 

The range of applicability of the methods proposed in this article, and the range 

5X1/90/2-6 



350 BRANDTANDLUBRECHT 

of problems for which the above cited efficiency is obtained, are discussed in 
Section 6.3. 

2. DISCRETIZATION 

Let xh = x0 + ih be equidistant gridpoints in Q, where i = (ii, i,, . . . . id) is a vector 
of integers and h is the meshsize. The discrete functions approximating u and w on 
this grid will be denoted by r.4: = u”(x:) and W: = w”(x:). 

Approximating the function u by a piecewise polynomial function tih, of degree 
2s - 1, interpolated from the grid values zP(xf) = UT, coefficients K::. can be 
calculated such that 

w”, s, K(x, y) t;“(y) dy = hdx K;$ ui”. (2) 
i 

In case UT = ~(xj”) and u is sufficiently smooth, it follows from (1) and the theory 
of polynomial interpolations that w(xi) = w: + O(h2” lulZs), where lulZs is an upper 
bound for the 2s-order derivatives of U. The value of the coefficients Kf$, which 
approximate K(x:, xi”), can often be calculated by analytical integrations (product 
integration, see, for instance, Young [ 151); this is especially important near kernel 
singularities. Just computing all the coefficients K:: would require O(sn2) opera- 
tions for a general kernel K, but, as we will see below, only a few coefficients 
(O(sn log n) in case of a potential-type kernel) will be needed on the finest level. 

2.1. Notation 

In the algorithms below, we will use a coarser grid with meshsize H = 2h. (Other 
values of H/h could also be used, but are less effective and/or less convenient.) The 
running index on that grid will generally be denoted by capital letters; e.g., 
uH- J- u”(x,“) is the value of the coarse grid function ~8’ at the coarse grid point 
x,” = x0 + JH. The points x,” are thus, for simplicity, chosen to coincide with fine 
grid points, satisfying xJ” = x’;,. A notation like K$ will stand for a discrete kernel 
whose first index is in the tine grid and the second is in the coarse grid, approxi- 
mating K(xf’, x,“). 

We will use II”, to denote an interpolation operator from the coarse grid (H) to 
the fine grid (h): If u” is a coarse-grid function, then fl”,u” is a line grid function 
obtained from it by multi-polynomial interpolation of some specified order. For 
example, if the chosen order is 2 then flh, is the multi-linear interpolation; i.e., linear 
interpolation if d= 1, bilinear if d= 2, etc. This is the usual notation used in the 
multigrid literature, the use of O”, instead of I”, serving to hint that the interpola- 
tion will often be of higher (than second) order. The index on which the operator 
works is denoted, when needed, by a dot. For example, 1kK:f.l denotes, for each 
index i, a fine-grid function obtained by interpolating from the coarse-grid function 
K:!, the latter being the function whose value at x,” is K::. The value of the inter- 
polated function at the line grid point x; is denoted by [O”,K:!]j. 
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h We will denote by (Ih,)= the adjoint of I,. This means that if IZ”, is written as 
an n x nc matrix (where n and nc are the number of points on the line and on the 
coarse grids, respectively), then (Ih,)= is the nc x n transpose of II;. Note that (Ih,)= 
describes a line-to-coarse transfer (“reduction”) operator, and indeed it will be used 
for that purpose. In case flh, denotes linear interpolation, for example, 2-d(Ih,)T is 
the familiar “full weighting” operator, extensively used in multigrid algorithms. 

Later on we will use more than two grids. It will therefore be convenient to refer 
to them as levels and number them, starting with the coarsest grid that will be 
called level 1, the next finer grid being level 2, etc. 

3. SMOOTH KERNELS 

3.1. General Description 

Whenever the kernel K(x, y) is sufficiently smooth with respect to the variable y, 
we can approximate K:‘J by 

z:; = [Ih,K::],, (3) 

where the interpolation 02 has sufficiently high order and Kt” is “injected” from 
K:f; i.e., Kfy ==f K$ (f or a more general situation see Section 6.2). Hence Eq. (2) 
can be approximated by 

where 

wf’ N +=fhd 1 x:;. ui” = hd 1 [lh,K;:]j u; 
i i 

= hd 1 K$ [(Oh,)’ uf-JJ = H” 1 K$,H, 
J J 

UHdTf2 -d(oh,)’ Uh. 

(4) 

(5) 

Note that uH is comparable to uh; in case uh is smooth u,” N ut. 
Whenever K(x, y) is also sufficiently smooth as a function of x (very often K has 

the same smoothness properties in both x and y), the value of w: can be calculated 
only for coarse grid points i = 21, using interpolation @, to obtain the other values 
on the fine grid (very often I”, = Jh, can be used). Namely, 

Wh N iI”, WH, (6) 

H- 
WI dTf zr- fib - Hd 1 KIr;“u,” 

J 
(7) 

and where KY: is “injected” from K!‘:, i.e., KFy d~f K!$= K’;;,,,. 
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The multi-summation (2) has thus been reduced to the analogous coarse grid 
multi-summation (7). The latter problem can be coarsened in a similar way, using 
a coarser grid with meshsize R= 4h. This process of coarsening is repeated until the 
number of gridpoints is proportional to n ‘j2 On that grid the multi-summation is . 
actually performed (requiring O(n) operations), since further coarsening would not 
reduce the overall complexity (e.g., the work involved in the transfer of uh to the 
coarse grid (5) is already of O(n)). Note that, for a fixed number of gridpoints n, 
the number of coarser levels required to reach a grid with FZ”’ points is inversely 
proportional to d, the dimension of Q. 

3.2. One-Dimensional Test 

In the following one-dimensional example the discretization error is O(h2) 
(2s = 2), while the interpolation error of K, and therefore the coarse grid integration 
error, is O(h4) (since we use fourth-order transfers). Therefore it should be possible 
to carry out the integration on a coarse grid with meshsize A= 0(/z’/‘), while the 
total error will be only slightly larger than the tine grid discretization error. The 
overall computing time is O(n). The treatment of the integrals near the boundary 
of the domain will be explained in detail in Section 4.1. 

The integral is given by 

where K( y - x) is defined by 

K(y-x)=cos(y-x), 

and u is given by 

u(y) = sin’ (v). 

(8) 

(9) 

(10) 

The integration over K is carried out in such a way that the integral is exact for a 
linear function (s = 1). The functions u and w are transferred using fourth-order 
operators (see end of Section 4.1). K on the coarse grid is given by KY: = K:!!,,. 
The coarsest grid (level 1) had (8 + 1) points, the second coarsest (16 + 1 ), etc. 

To be able to monitor the error in the multilevel multi-integration we will 
measure the error E:, defined as the average absolute error of the integrals on level 
I, when the integration itself is carried out on level k (k < I), 

E;= (11) 

where in this section w?’ is given by w:v’= [R~w!]~. Note that Ef is the L, norm 
of the discretization error on grid I. We wish to see for which k EL = Ei holds. 
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TABLE I 

Average Error EL in Calculating 
the One-Dimensional Smooth-kernel M’ulti-integration (8) 

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5 k=I-6 

2 8.48e-3 

3 2.14e-3 
4 5.35e-4 
5 1.34e-4 
6 3.35e-5 
1 8.37e-6 
8 2.09e-6 
9 5.23e-I 

10 - 1.3e-7 
11 - 3.3e-8 
12 - 8.e-9 

9.94e-3 

2.23e-3* 

5.41e-4 
1.34e-4 
3.35e-5 
8.37e-6 
2.09e-6 
5.23e-1 
1.3le-7 

3.70e-3 

6.34e-4 

1.40e-4* 
3.39e-5 
8.39e-6 
2.09e-6 
5.23e-7 
1.31e-7 
3.25e-8 

2.33e-4 
3.97e-5 
8.75e-6* 
2.12e-6 
5.24e-7 
1.3le-7 
3.25e-8 
8.35e-9 

1.46e-5 
2.48e-6 
5.4le-7* 
1.32e-7 
3.26e-8 
8.06e-9 

8.28e-6 
9.lOe-7 
1.55e-7 
3.40e-8 * 
8.54e-9 

5.18e-7 
5.65e-8 
l.tMe-8 

Note. For a grid with 2’+2 + 1 points, employing a coarsest auxiliary grid with 2k+2 + 1 points 

The results in Table I were obtained using fourth-order operators for both 0; 
and (1:)‘. The starred results clearly show that the grid can be coarsened to 
H= 0(/r”‘), whereas the total error remains very close to the discretization error 
of the fine grid integral. The work involved in transferring uh to the coarse grid and 
in interpolating W” to the fine grid is obviously O(n). Since the integration is 
carried out on a coarse grid with a number of points proportional to n’j2, the total 
work should be O(n), and this complexity was indeed obtained by the algorithm 
(see the starred results in Table II). 

TABLE II 

CPU Time in Seconds for Table I 

I k=l k=l-1 k=I-2 k=I-3 k=l-4 k=I-5 k=I-6 

2 0.007 
3 0.016 
4 0.057 
5 0.197 
6 0.753 
1 2.94 
8 11.4 
9 45.1 

10 - 200.0 
11 - 800.0 
12 - 3200.0 

0.005 
0.008* 0.006 
0.022 0.013 
0.066 0.029’ 
0.211 0.079 
0.785 0.241 
2.95 0.848 

11.6 3.17 
46.0 11.8 

46.5 

0.021 
0.045 
0.108* 0.076 
0.312 0.170 0.142 
0.975 0.435* 0.300 
3.38 1.22 0.691 0.568 

12.6 3.87 1.73* 1.21 
47.4 13.6 4.91 2.10 
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4. SINGULAR-SMOOTH KERNELS 

4.1. General Description 

So far, the kernel K was assumed to be much smoother than the function u over 
the entire domain of integration. In many problems of practical importance the 
kernel K(x, v) is what we will call “singular-smooth”; that is, it has some singular 
points and the smoothness increases rapidly with increasing distance from these 
points. An example is potential-type kernels, such as K(x, y) = log Ix - yl or 
K(x, y) = Ix - ~1~‘. For simplicity we will assume that, as in these examples, the 
only singular points are the points x = y. (For further remarks about the kernels for 
which the present methods are applicable, see Section 6.3.) 

We start with the case that i = 21 and derive an exact expression relating WY = E$ 
and wf , replacing the approximate equation (4), 

Since Kt: is an interpolation (3) of K::. itself using only coarse grid points, the 
operator (Kg; - K:;.) is given by 

W:: - R::;) = 
0 j=2J 
O(h@K’@‘(<)) otherwise, (13) 

where 2p is the interpolation order and KCzp)( 5) is a 2pth derivative of K at some 
intermediate point 5. 

Thus, whenever the 2pth difference of K is suitably small (h2P lK’2p’J < h2’ JuIzs), 
the coarse grid approximation WY to wf in (12) will be an accurate one. Clearly this 
is no longer uniformly true when the kernel K is singular at certain points. 
However, far from the singularity ((I y - XII 9 h or II j - ill $1 for the discrete case), 
the 2pth differences of K will again be small. Using this knowledge of K we can split 
the correction term in (12) into two parts and write 

w;=wy+hd 1 (K;;-RF;) uJ” 
Ilj-ill <m 

+hd 1 (K;‘1-R$)u;, 
Ili - ill > m 

(14) 

where in one dimension llj- ill = 1 j- il. The meaning of this norm in higher dimen- 
sions is more involved (it depends on the direction of interpolation) and will be 
discussed below. 

The remaining problem is to find a value of m for which we can neglect the last 
term in (14). This means that for the case of singular-smooth kernels, the multi- 
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integration is again performed on the coarse grid, but part of the integral, near the 
singularity, is corrected. The corrected value is injected to the tine grid, so that 

w)e$‘=w;+h“ 1 (K:;-Rz) u;. (15) 
ll/-4Gm 

If the point i is not a coarse grid point (i = 2Z+ l), we define another coarse grid 
approximation Z? to the fine grid kernel K (16), similar to R defined by (3) but now 
interpolating with respect to the index i, 

where Kz = K!$ j. In terms of k we can write 

(17) 

Assuming that K(x, y) has similar smoothness properties in x and y, and that 
therefore identical interpolation operators are used in (3) and (16), the equation for 
the correction term here will be similar to (13): 

(K;;- k:;.) = O(h2pK’2p’(<)) (Vi = 2z+ 1, Vj). (18) 

Again the correction term in (17) is split into two parts, and the part for 11 j - ill > m 
is neglected, defining the approximation to the tine grid integral, when i is not a 
coarse grid point, by 

Equations (15) and (19) define the coarse grid approximations to the line grid 
integrals for all point i; first the coarse grid integrals are calculated, then these 
integrals are corrected and injected to the line grid (15) and, finally, the tine grid 
integrals are interpolated to the points i that are not part of the coarse grid and 
corrected again (19). 

An alternative way for computing (19) would be to interpolate KY: with respect 
to both variables Z, J in (16): Z$= [j”,Z?FTli= [%~Oh,KFf”]i,,. This would result 
in a somewhat (about one-third) smaller error in the integrals W: (i = 2Zf l), at the 
expense of introducing a second correction function, instead of (18). However, 
because of the additional storage needed and the more complicated calculation of 
$ the actual computations were carried out as described by (19). 

For convolution-type kernels, the correction terms (K::. - Z?f;) and (Kt’J - f?:;) 
can of course be pre-computed in O(n) operations. Therefore this calculation does 
not change the overall O(rap) complexity. However, for general type kernels, the 
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application of the corrections in this manner would consume n(2p)(2m + 1) opera- 
tions on the finest grid. This correction work can again be reduced to O(np) by 
grouping together cp points (cp values of i) at a time and by carrying out the 
corrections for all these cp points over a fixed (independent of i) interval (of length 
2m + CP = O(P)), instead of the varying interval (llj- ill 6 m) used in (19). The 
calculation of the contributions of UT, for each j in the fixed interval, to the coarse 
grid function uH, and, through it, to wH costs O(p2) operations, but it is performed 
once per cp points, hence costing only O(p) operations per point. These contribu- 
tions to wH are then interpolated and subtracted from the integral at each of the 
cp points, and the exact contributions xi K$$ are added instead (i being each of 
the cp points, cj being a summation over the fixed interval). 

The restriction operators I# = (I”,)’ used in (5) for the one-dimensional case are 
given below. These operators can also be used in problems of a higher dimension, 
if the grid is coarsened with respect to one dimension at a time (see Section 4.4). 
The operators of order 2, 4, and 6 are respectively 

I,“=#, 2, l] @a) 

I;=h[-1,0,9, 16,9,0, -11 W’b) 

and 

I,H=&[3, 0, -25, 0, 150, 256, 150, 0, -25,0, 31. c=) 

Near the boundary of the domain Sz non-central transfer operators for u and w 
should be applied. The number of additional operators that should be programmed 
is directly proportional to the order 2p of the transfer operator. One can aooid this 
additional programming and use the central transfer operators also near the bound- 
ary, by smoothly extending K(x, y) outside Q (usually K(x, JJ) is well defined there 
in the first place), while defining on the finest grid u( JJ) = 0 for y $0. In practice this 
means adding external points near the boundary of each coarser grid, for which 
non-vanishing values of z.P, as well as needed-for-interpolation values of w”, are 
calculated. The number of such external points is at most 2p - 2 in each direction 
on each line of interpolation. 

4.2. Minimum Work 

Taking the one-dimensional kernel K = In Ix - yl as an example, we will now 
derive the optimal values of the order 2p of the transfer operators (we will only 
consider even orders) and of the radius m of the fine grid correction region, so as 
to minimize the computational work, under the constraint that the added error, due 
to the use of coarser grids, should be smaller than the original fine-grid discretiza- 
tion error. The interpolation error, resulting from the use of the interpolated kernel 
R or R instead of the full kernel K is given by (13), (18). However, since part of 
this error is corrected (15), (19), the first uncorrected error term in w will occur at 
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a distance (m + 1) h from the singularity. The error resulting from the use of &j, 
instead of Ki,,i, at that point (j= i+ (m + 1)) is 

X(2p-l)x(2p-3)x ... x(1)x(-1)x ... x(3-2p)x(l-2p) 
(2P)! 

(21) 

(see, for instance, [S, p. 279]), where a calculation for the logarithmical kernel 
shows that, provided m 22.5~ (so that no interpolation point is too close to the 
singularity at i), one can approximately take 5 at x, = xi + (m + 1) h and hence 

$ K(x,, 5) z (2p- ‘)! 
(m + l)*” h2p’ (22) 

The error in w resulting from all uncorrected points, at distances (m + 1) h, 
(m + 2) h, . . . . both left and right of the singularity, can similarly be calculated, and, 
when added together, yield approximately 

3,16{1x3x5x ... x(2p-l)}‘_ 0.7p 2p 
2p(m + 1)‘” (-1 m+l ’ (23) 

Notice that this interpolation error is independent of the meshsize, hence the same 
error will approximately be introduced also at each interpolation in each of the 
subsequent coarsening steps. 

The discretization error, the error of approximating (1) by (2), is 0(h2su(2s)(<)), 
where 2s is the approximation order. We will assume u to be smooth on the scale 
of the entire domain; so that h2ru(2.v) z n 2v, where n is the number of gridpoints on 
the domain. (More generally, this relation can be used to define the “effective” n, 
so that n is roughly the number of meshsizes in the length scale on which u is 
smooth.) The condition that the coarse grid integration error (23) should be 
smaller than the fine grid discretization error is therefore 

m = 0.7pdP - 1. (24) 

As a second equation we calculate the amount of work per fine grid point as a 
function of 2p and m. Taking an “operation” to mean a combination of one multi- 
plication and one addition, the number of operations in transferring the function uh 
to the coarse grid is p per fine grid point (since for half of the values of uh the trans- 
fer is trivial). Similarly, p is also the number of operations per fine gridpoint in 
interpolating wH to the fine grid. The number of operations per point in correcting 
the coarse grid integral on the fine grid is 2m + 1. This gives (2m + 1 + 2p) as the 
total fine grid work per fine grid point, and similar figures also hold in higher 
dimensions (as we will see below). For a d-dimensional problem (or in higher 
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dimensions, when coarsening with respect to d dimensions at a time), since the 
coarse grid has approximately 2-d the number of the fine grid points, the number 
of coarse grid operations is proportional to 2 Pd(2m + 1 + 2~); and so on for still 
coarser grids. The work of the actual integration on the coarsest grid can be 
neglected, assuming this grid has less than n”* points. Adding all the work on all 
the levels we obtain the total work per line grid point, 

WE (l-2-7’ (2m+ 1 +2p). (25) 

Substituting m from (24) into (25) and then minimizing W by setting C? W/ap= 0 
gives the equation cr(ln o! - 1) = 1.43, where tl= &‘. It follows that a = 3.9 and 
hence 

2p = 1.4s In n, (264 

and by (24), 

m = 1.4(2p) - 1 = 2s In n - 1. Wb) 

Hence, by (25), for d= 1, 

In Table III we, for example, take s = 1 (piecewise linear integration rule) and 
compute the optimal values of 2p (by (26), rounded to an integer) and the corre- 
sponding m and W (derived from (24) and (25), respectively) as functions of the 
level 1. Furthermore, we show the optimal value of m (24), and the corresponding 
work W (25), when restricting the order of transfers to 2p = 6. In this way we can 
see how the work with a restricted order of transfer is related to the minimal work. 

TABLE III 

Optimal Values for m and 2p and 
Corresponding W for d = 1, s = 1 

1 n 2P 

3 33 6 
4 65 6 
5 129 8 
6 251 8 
I 513 10 
8 1025 10 
9 2049 10 

10 4097 12 
11 8193 12 
12 16385 12 

m W 

6 38 
8 46 
9 54 

11 62 
11 66 
13 74 
15 82 
16 90 
18 98 
20 106 

2p m W 

6 6 38 
6 8 46 
6 11 58 
6 145 70 
6 17 82 
6 22 102 
6 28 126 
6 36 158 
6 45 194 
6 57 242 
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Note that the work per point for the “classical” integration is given by W= n. 
The main conclusion to be drawn from this table is that, even with unrestricted 
transfer orders, the optimal order of transfer is reasonable, while when restraining 
the order of transfer to 6, the amount of work increases only by a factor of 2 (for 
n N 10,000). Thus, transfers of impractically high orders are not required to obtain 
computing times close to the theoretically best. For problems in higher dimensions 
the situation will be even more favourable. as we will see in Section 4.4. 

4.3. One-Dimensional Test 

As an example of a multi-integral with a non-periodic, singular-smooth kernel, 
we tested the one-dimensional case discussed above, 

w(x)=jI In Ix-y1 (1 -y’)dy, (27) 
I 

with piecewise linear (second-order accurate: s = 1) discretization. Equations (15) 
and (19) were used for the fast integration with m = 3 + 2 Inn (found to give 
reasonable results at moderate values of n). In Tables IV and V average errors (11) 
are given, using fourth- and sixth-order transfers, respectively, where now w:’ are 
the values obtained for W: on the finest grid through the corrections (15) and (19), 
assuming similar corrections have also been used for obtaining WY, and so on 
recursively to level k, for which the values of w are calculated by direct summation. 
The coarsest grid (I = 1) has 8 + 1 points including the boundaries, the second 
coarsest 16 + 1, etc. (see also Table III). Additional points were used on coarse 
grids to cope with the necessity of a larger domain, as outlined in Section 4.1. 

When one allows the additional error introduced by the coarse grid integration 

TABLE IV 

Average Error Ei in Calculating the 
One-Dimensional Logarithmic-Kernel Multi-integration (27), 

Using Fourth-Order Transfers 

1 k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5 

8.332e-3 
2.094e-3 
5245e-4 
1.312e-4 
3.282e-5 
8.207e-6 
2.052e-6 
5.13Oc-7 

8.332e-3 

2.14Oe-3 
5.477e-4 
1.403e-4 
3.61Oc-5 
9.894e-6 
2.654e-6 

2.14le-3 
5.667e-4 
1.536e-4 
4.202e-5 
1.317e-5 
3.846e-6 
l.l77e-6 

5.662e-4 
1.62Oe-4 
5.026e-5 
1.909e-5 
6.148e-6 
2.051e-6 

1.62Oe-4 
5.45le-5 
2.780e-5 
l.O29e-5 

5.45le-5 
3.214e-5 

Note. For a grid with 2’+2 + 1 points, employing a coarsest auxiliary grid with 
2k + * + 1 points. 
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TABLE V 

Same as Table IV but Using 
Sixth-Order Transfers 

1 k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5 k=l-6 

2 8.332e-3 
3 2.094e-3 
4 5.245e-4 
5 1.312e-4 
6 3.282e-5 
I 8.207e-6 
8 2.052e-6 
9 5.130e-7 

10 - 1.2e-7 
11 - 3.0e-8 

8.332e-3 
2.078e-3 
5.222e-4 
1.307e-4 
3.269e-5 
8.141e-6 
2.034e-6 

2.054e-3 
5.170e-4 
1.297e-4 
3.244e-5 
8.012e-6 
1.998e-6 
4.968e-7 

5.154e-4 
1.278e-4 
3.194e-5 
7.756e-6 
1.926e-6 
4.754e-7 
l.O95e-7 

1.278e-4 
3.12Oe-5 
7.327e-6 
1.786e-6 
4.331e-7 
8.809e-8 
1.966e-8 

3.12Oe-5 
1.3 15e-6 
1.637e-6 
3.599e-7 
4.712e-8 
7.668e-9 

1.3 15e-6 
1.735e-6 
3.015e-7 
4.793e-8 
2.135e-8 

to be as large as the discretization error on the finest grid, the fourth-order transfers 
(20b) give good results for 21-k < 10. The sixth-order scheme (20~) gives satisfac- 
tory results for 21- k < 17, while the amount of additional computing time needed 
by the sixth-order transfers is small compared to the overall computing time 
(generally 20 % ). 

To see whether the fast multi-integration efliciency depends on the smooth 
character of u(y) in (27) the same calculations were carried out with a more 
oscillatory function U. It turns out that, since the discretization error of the fine grid 
integration is larger, the coarse grid integration becomes relatively more accurate; 
in other words, the effective n (see Section 4.2) is smaller. Thus, the fast integration 
of a more oscillatory function is an easier task. 

In Table VI the computing time for Table V, in seconds on an IBM 3081, is 

TABLE VI 

CPU Time in Seconds for Table V 

1 k=l k=l-1 k=l-2 k=I-3 k=I-4 k=I-5 k=I-6 

2 0.006 
3 0.015 
4 0.057 
5 0.199 
6 0.766 
7 2.95 
8 11.8 
9 - 45.0 

10 - 180.0 
11 - 720.0 

0.014 
0.023 0.036 
0.057 0.059 
0.124 0.124 
0.349 0.260 
1.02 0.612 
3.53 1.60 

4.14 

0.064 
0.128 0.133 
0.257 0.260 0.269 
0.514 0.526 0.537 0.534 
1.18 1.11 1.11 1.12 
2.81 2.45 2.36 2.37 
7.14 5.23 4.80 4.75 

12.4 10.6 10.1 
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given. Since the important information is the relative reduction in computing 
time, the results should be approximately machine independent. The multilevel 
multi-integration gives a significant reduction in’computing time over the “classical” 
one-level integration (k = I), from level 6 (257 points) onwards, so the approach is 
only worthwhile for multi-integration over many points. Using second-order 
transfers, the multilevel multi-integration gives a significant gain in computing time 
from level 4 (65 points) onwards. When comparing the gain in computing time with 
the predictions from Table III, it can be seen that the gain lies somewhere between 
the two predicted gains (with unrestricted p and with 2p restricted to 6), since 
the number of points rn to be corrected on the line grid, which is taken as 
m = 3 + 2 In n, does not grow as fast as in the seventh column of Table III. This 
results, of course, in somewhat less accurate integrals, but in the tested cases the 
error was still smaller than the truncation error. 

All reported results were obtained from programs written in PASCAL. Since the 
compiler used was not very efficient, a FORTRAN code was written, for which a 
very efficient compiler was available, to check if the obtained reductions in 
computing time were compiler dependent. Whereas the FORTRAN code was 
much faster (CPU times were nearly one-tenth of the PASCAL computing time), 
the relative reductions obtained by the multilevel integration were very similar 
(differences were less than 10%). Also the PASCAL code was run on a different 
machine (VAX 1 l/750) giving similar results. Thus it can be safely concluded that 
the reported reductions in computing time can be generally obtained. 

4.4. Two-Dimensional Test 

The above algorithm can easily be extended to two dimensions by coarsening 
alternately in the x dimension and the y dimension. In this way, the transfer of the 
kernel K and the function u and the interpolation and correction of w are essentially 
the same as for the one-dimensional case (Section 4.1). This approach, which may 
seem cumbersome at first glance, proved to be very effective and simple to 
generalize to even higher dimensions. Its slight disadvantage is the additional 
(50%) storage required for the “half-coarsened” grids. Its main strength is its 
simplicity and the way it decouples both variables. Furthermore, it ensures that the 
total work will continue to be proportional to O(n log n), since all the components 
of the algorithm are at most of this complexity. 

As a test problem, the multi-integration chosen was: 

4x, Y) = 5, K(x, y, x’, y’) 24(x’, y’) dx’ dy’, (4 Y 1 E Q, (28) 

where 

4x’, Y’) = 
(1 - xQ - y’2)1/2 b’,Y’)EQ 
o elsewhere, 



362 BRANDT AND LUBRECHT 

and Q is the disc x2 + y* 6 1. The line grid integration is second-order accurate 
(s = 1). 

As stated in Section 4.1, the number of points on each grid is extended according 
to the order of transfer, resulting in a straightforward integration near the 
boundary. In two dimensions the cost of this additional storage is considerable, 
except for very line grids-which is our aim anyway, since the multilevel approach 
pays only when using a large number of points. 

In the next six tables (Tables VII-XII) results are reported for tests in which the 
corrections (15), (19) to the coarse grid integrals were carried out over rectangles 
of (2~2, + 1) x (2m, + 1) points around the singularity: in the direction of inter- 
polation the number of correction points was m, = 3 + 0.5 Inn, while in the 
perpendicular direction the number of points was m2 = 2. The error norm (11) is 
adjusted with respect to these corrections (15), (19) as explained in Section 4.3. The 
coarsest grid (level 1) consisted of (4 + l)* points, level 2 of (8 + l)* points, and 
level 3 of (16 + 1)’ points, etc. 

As can be seen from these tables, for any given n, the order of transfer necessary 
to obtain a nearly optimal reduction in computing time is much lower than for the 
one-dimensional case (compare Tables IV and VIII); otherwise the same conclu- 
sions are valid. Mainly because of the additional points needed near the boundary 
on every grid, the computing time on the coarse grids increases significantly when 
high-order transfers are used (compare, for instance, I= 2, k = 1 in Tables X, XI, 
and XII). However, these high-order schemes should be used for large problems 
only, where the additional computing time due to the extra points becomes small 
(approximately 15 % for level 7 calculations with sixth-order transfers). On level 7, 
when sixth-order transfers are used, the computing time is reduced by a factor of 
300, while the additional error caused by the coarse grid integration is still 
negligible. 

TABLE VII 

Average Error EL in Calculating 
the Two-Dimensional Singular-Smooth Multi-Integration (28), 

Using Second-Order Transfers 

I k=l k=l-1 k=I-2 k=l-3 k=l-4 k=I-5 

2 2.312e-1 2.6OOe-1 - 
3 7.685e-2 9.566e-2 1.275e-1 
4 1.518e-2 1.5 13e-2 3.374e-2 6.535e-2 
5 - 4e-3 3.501e-3 l.O23e-2 3.568e-2 

Note. For a grid with (2’+ ’ + 1) x (2’+ ’ + 1) points, employing a coarsest grid of 
(2 ‘+‘+1)~(2~+‘+l)points. 
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TABLE VIII 

Same as Table VII, but 
Using Fourth-Order Transfers 

1 k=l k=l-1 k=I-2 k=l-3 k=i-4 k=I-5 

2 2.312e-1 2.32le-1 
3 7.685e-2 7.805e-2 1.942e-2 
4 1.518e-2 1.584e-2 1.663e-2 1.854e-2 
5 - 4e-3 5.160e-3 5.833e-3 6.659e-3 9.247e-3 
6 - le-3 1.8OOe-3 2.316e-3 3.46le-3 
I - 3e-4 8.61 le-4 1.269e-3 

TABLE IX 

Same as Table VII, but 
Using Sixth-Order Transfers 

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=l-5 

2 2.312e-1 2.315e-1 
3 7.685e-2 7.636e-2 7.594e-2 
4 1.518e-2 1.502e-2 1.491e-2 1.524c-2 
5 - 4e-3 4.616e-3 4.463e-3 4.36Oe-3 4.686e-3 
6 - le-3 1.313e-3 l.O16e-3 9.525e-4 1.627e-3 
7 - 3e-4 3.953e-4 3.317e-4 3.769e-4 

TABLE X 

CPU Time in Seconds for Table VII 

I k=l k=l-1 k=I-2 k=l-3 k=I-4 k=I-5 

2 0.113 0.085 
3 1.35 0.466 0.485 
4 19.4 3.04 2.15 2.13 
5 - 310.0 27.6 11.4 10.4 

TABLE XI 

CPU Time in Seconds for Table VIII 

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5 

2 0.113 0.155 - 
3 1.35 0.703 0.651 
4 19.4 4.15 2.79 2.78 
5 - 310.0 32.5 12.7 11.2 11.2 
6 - 5,000.0 70.0 51.2 50.0 
7 - 80,OOO.O 235.0 218.0 
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TABLE XII 

CPU Time in Seconds for Table IX 

I k=l k=l-1 k=I-2 k=I-3 k=I-4 k=I-5 

2 0.113 1.01 
3 1.35 2.56 2.21 
4 19.4 9.86 6.34 5.99 
5 - 310.0 56.1 21.2 17.5 17.3 
6 - 5,000.0 102.0 61.2 63.7 63.4 
7 - 80,OOO.O 278.0 252.0 248.0 

5. SOLUTION OF INTEGRAL EQUATIONS 

5.1. Straightforward Multigridding: A Preliminary Test 

The fast integration, outlined in the previous sections, can of course be used 
straightforwardly in the solution of integral equations, e.g., by employing it in the 
relaxation process and residual calculations of the usual FMG (full multigrid) 
algorithm (described in many articles; see, e.g., [4, Sect. 1.61): The relaxation 
should usually be of the simultaneous displacement type (such as Jacobi or 
Richardson relaxation), so that all the integrations needed in one relaxation sweep 
can be performed by one multi-integration. 

However, in case successive displacement (e.g., Gauss-Seidel) schemes have much 
better smoothing properties, they can be approximately implemented in a defect- 
correction manner. That is, instead of relaxing the system of equations Lu = f 
(where L is a discretized integral operator, e.g., Lui = hd c, K,,iui), one can relax 
L’u =f’, where L’ is a local approximation to L (e.g., L’ui = hd xjE NCij Kj,juj, where 
N(i) is some neighborhood of i) and f’ =f+ L’u - Lu. This f’ can be calculated 
simultaneously at all points once per sweep, hence requiring only one multi-integra- 
tion per sweep for evaluating Lu. In fact, f' may be evaluated only once per several 
sweeps; this is a good idea even for Jacobi-type relaxation, since the major cost is 
that of the multi-integration (see Section 5.2). An alternative to defect corrections 
is to update the integrals in some neighborhood of each relaxed point. (This alter- 
native must be taken when the distributed relaxation described below is used, since 
some of the changes entering L’u are of lower distribution order than those 
entering Lu.) 

It is important to ensure that relaxation is effectively local; i.e., that relaxing at 
a point xi introduces only small changes to the discrete integral hd Ck Kjkuk FZ 
f K(xj, y) u(y) dy at points xj far from x,; otherwise each such integral would 
accumulate too many significant changes in a relaxation sweep. This can be 
achieved using a suitable kind of distributed relaxation. For example, instead of 
updating one unknown at a time (ui t ui + S,), say, three values are simultaneously 
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changed: u,_, t ui- i - 6;, ui t ui+ 26,, and ui+, t u,, , - 6,, where 6, is chosen 
such that after these changes the equation at xi is satisfied. This is called a second- 
order distributed relaxation. More generally, a distributed relaxation of order Y is 
a relaxation where each set of simultaneous changes is an r-order difference of a 
local function (e.g., a multiple of a discrete delta function). Such a relaxation 
usually ensures that the changes in the integrals are essentially local: the influence 
of an r-order distributed relaxation at xi on the integral at xi behaves like 
CK(x,, x,)/ax’, which decays like Jxi - xi I- r or jxi - xj 1 m-r - ’ in potential-type 
kernels. Such distributed relaxation schemes (special cases of the general schemes 
discussed in [S, Sect. 3.51) can be used either as simultaneous displacement 
schemes (new values replacing old ones at the end of a sweep), in which case they 
are called distributive Jacobi; or in successive displacements (the changed values 
being immediately used in relaxing subsequent equations), in which case they are 
called distributiue Gauss-Seidel. Near boundaries lower-order distributions can be 
used. 

As a test problem we have solved the equation 

Wx) - i’ W, Y) u(y) & =f(xh 
J -1 

(29) 

where K= In Ix - yl and f is chosen so that the solution is V(y) = 1 - y2. The 
discretization is second-order accurate (2s = 2). For I = 0, for example, the 
smoothing factor of the second-order distributive Jacobi and distributive Gauss- 
Seidel schemes are ,ii = 0.415 and p = 0.238, respectively. Using an underrelaxation 
factor of 0.6, distributive Jacobi is effective in the entire range of I: ji lies between 
p = 0.302 and fi = 0.400 (the values for 1b = 0 and i = co, respectively). 

As a preliminary experiment we have treated the case of I = 3 and used the 
second-order distributive Jacobi relaxation (by no means the best scheme for this 
case) in V(1, 1) cycles. At the two boundary points a first-order distribution has 
been employed. Tables XIII and XIV show results obtained with second-, fourth-, 
and sixth-order transfers (2~ = 2,4,6, resp. (20a)-(20c)) and m = 3 + 2 in n. In 
Table XIII the L, norm of uk - U is given, where uk is obtained using k coarser 
grids in the multi-integration and two I’( 1, 1) cycles per each level of the FMG 
algorithm. In the first column (labeled 37/(1, l)), the discretization error is 
approximated using one additional V( 1, 1) cycle, to eliminate the algebraic error. 
From this table it can be concluded that two V( 1, 1) cycles solve the problem to 
the level of truncation errors. Whenever the error in the multi-integration was of 
the same order as the discretization error, the transfer order 2p was raised by 2. 

The computing time is given in Table XIV. An O(n log n) complexity is quite 
clearly shown. The actual running time could be substantially reduced by using a 
better relaxation scheme (hence less relaxation sweeps per cycle and/or less cycles), 
or, even further (by a factor close to 12) by the techniques we discuss next 
(Section 5.2). 
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TABLE XIII 

L, Norm of uk - U 

1 2P 3UL 1) k=O k=l k=2 k=3 k=4 k=5 k=6 

2 2 1.76e-3 2.11e-3 1.98e-3 - - - - 
3 2 437e-4 5.61e-4 367e-4 4.48e-4 - - 
4 2 l.O8e-4 1.37e-4 2.21e-4 4.77e-4 5.08e-4 - 
4 4 l.O8e-4 1.37e-4 l&e-4 1.43e-4 1.41e-4 - 
5 4 2.65e-5 3.45e-5 3.62e-5 3.88e-5 4.1Oe5 4.08e-5 - 
6 4 6.45e-6 8.99e-6 9.6Oe-6 l.O7e-5 1.23e-5 1.35e-5 1.35e-5 - 
7 4 1.56e-6 2.38e-6 3.12e-6 3.69e-6 4.69e-6 6.22e-6 7.67e-6 7.67e-6 
7 6 1.56e-6 2.38e-6 2.37e-6 2.35e-6 2.32e-6 2.28e-6 2.26e-6 2.26e-6 
8 6 4.67e-7 5.95e-7 5.92e-7 5.87e-7 5.76e-7 5.59e-7 5.38e-7 5.36e-7 
9 6 - 1.2e-7 - 1.5e-7 1.47e-7 1.46e-7 1.43e-7 1.36e-7 1.27e-7 l.l8e-7 

10 6 - 3.Oe-8 - 4.Oe-8 3.38e-8 3.07e-8 2.54e-8 2.2Oe-8 

Note. I/ is the solution of the integral equation (29) and uk is the approximate solution 
obtained using k coarser grids in each of the multi-integrations and 2V(l, 1) cycles at each level 
of the FMG algorithm. 

5.2. Advanced Multigridding 

The work of the integral solver can be drastically reduced by having it resort to 
full-order multi-integration as seldom as possible. In fact, only one such multi- 
integration on the finest grid, plus some much less expensive ones (on coarser grids 
and/or using lower accuracy) is all that is needed. 

The proposed procedure for obtaining a solution to 0(/r*“) accuracy on the finest 
grid is an FMG algorithm as follows. First the equations are solved to a similar 
accuracy on a coarser grid, say with meshsize yh. (This is done by a similar 
procedure-so the algorithm is defined recursively.) The grid+ solution is then 
interpolated to grid h to serve there as the first approximation. The order of this 

TABLE XIV 

CPU Time in Seconds for Table XIII 

I 2P k=O k=l k=2 k=3 k=4 k=5 k=6 

2 2 0.64 
3 2 1.06 
4 2 1.85 
4 4 2.44 
5 4 4.62 
6 4 11.8 
7 4 38.0 
7 6 39.9 
8 6 140.0 
9 6 - 500.0 

10 6 - 2000.0 

0.63 - 
1.04 1.08 
1.77 1.73 
2.63 2.45 
4.06 4.10 
7.85 7.30 

18.0 13.9 
20.3 16.6 
54.1 34.7 

169.0 83.8 

1.77 
2.34 
4.05 
7.25 

13.4 
16.0 
31.1 
65.9 

140.0 

- 
4.11 - - 
7.38 7.35 - 

13.4 13.5 13.5 
16.0 15.9 16.1 
30.8 30.8 31.0 
62.8 63.1 63.5 

123.0 122.0 120.0 
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interpolation should be 2s or a little higher (if we want to have U(h*“) accuracy also 
in derivatives of the solution; see [S, Sect. 7.1 I). 

The first approximation thus obtained, denoted u’, is now used for an 0(/z*‘) 
calculation of the integrals by the multi-integration. In our example (29), this 
multi-integration should cost about Wn = 1 lsn In n operations (see (26~)). From 
this point on no such full multi-integration is needed. Instead, whenever needed 
(e.g., after each relaxation sweep or coarse-grid correction), a multi-integration is 
done on the solution increment, i.e., the difference between the current solution and 
UO, and the integrals thus calculated are added to those of ~4’. The incremental 
multi-integration can be of lower order: since the increment is only about y” times 
the truncation errors, the multi-integration can employ p and m which are 
O(s log y), instead of O(s log n), hence requiring O(sn log y) operations only. Since 
the required number of multigrid cycles (each employing a couple of relaxation 
sweeps followed by a coarse-grid correction) is O(s log y), the total number of 
operations in all the fine-grid incremental multi-integrations is O(s* n(log y)‘). 

Each calculation of a coarse-grid correction should itself employ multi- 
integrations on coarser grids, but the needed accuracy of those is even lower: 10% 
accuracy should be enough, since it is a crude correction function which is being 
calculated. Hence p and m which are O( 1) can be used in these multi-integrations, 
and their cost is O(n) operations per cycle, hence O(sn log y) in all the cycles. 

In summary, the entire FMG solution process requires only one full multi- 
integration on the finest grid, plus a similar one on each of the coarser grids (for 
the recursion needed to obtain the first approximation); the rest of the work is 
O(s*n(log y)‘). Hence the total number of operations to solve a d-dimensional integral 
equation to accuracy O(h*“) is 

( nW+n W+? W+ ... +O(szn(logy)2) 
f Y2d ) 

<(l-y-d)-’ Wn+O(s%(logy)2), (30) 

where Wn is the work of one fine-grid O(h’“) multi-integration. Thus, in principle, 
for large enough n the total work is as close as one wishes to Wn, the work of just 
one multi-integration (taking, e.g., y = log n). In case of (29), for example, 
Wz 11s log n (see (26c)), hence the total number of operations should be about 
12sn log n + O(s*n) (taking, e.g., y = 12; for moderate n, y = 2 is, of course, 
preferable, and the operation count is then 22sn log n + O(s*n)). 

Preliminary tests of the approaches described in this section have been done with 
the two-dimensional problem of Section 4.4, confirming the expected gains. 

6. CONCLUSION 

6.1. Summary of Results 

The computing time for multi-integrals with sufficiently smooth kernels has been 
reduced from O(n*) to O(n) using multilevel multi-integration. More important, the 



368 BRANDT AND LUBRECHT 

calculation time for the basic potential-type kernels was reduced from 0(n2) to 
O(n log n). The gain, however, is significant only when working with sufficiently 
many points (several dozens). This fast multi-integration can be applied 
straightforwardly to the fast multigrid solution of integral equations. 

For a one-dimensional multi-integration with a simple potential-type kernel, the 
theoretical number of required operations per gridpoint is roughly W= 11s In IE, 
where 2s is the accuracy order of the discretization. If the order of the inter-grid 
transfers is restricted to 6, for n ‘v 10,000, this computing time is just doubled. The 
solution time for corresponding integral equations should be about W+ 0(&z). 

Using grids coarsened with respect to one variable at a time, such results can 
readily be extended to higher dimensions. This convenient approach uses 
approximately four times as much storage as the one-level integration, partly 
because of the storage of the correction terms ( 13), (18) and partly because of the 
storage of the “half-coarsened” grids. The required order of transfers, relative to the 
total number of points n, is much lower in problems of higher dimension. 

Because the method employs simple equidistant grids, with a coarse to fine mesh 
ratio of 2, the algorithm is easily programmed, especially by anyone familiar with 
multigrid programming. 

6.2. Nonuniform Grids and Many-Body Interactions 

In several problems of interest, it is inconvenient or impossible to choose the 
finest grid to be equidistant; e.g., in problems with interacting particles, the line grid 
points coincide with the position of the particles. In this case multilevel multi- 
integration can still be used to speed up the calculation, but the next coarser grid 
will be constructed as a semi-uniform grid (a uniform grid subdivided wherever the 
particle density is higher), and as a consequence the coarse grid will no longer be 
a subset of the line grid. The transfer of the function K from the finest grid to the 
next coarser grid should then be performed by a high-order interpolation, instead 
of by simple injection. In fact, however, in particle-type problems the kernel K is 
usually given by a closed-form formula (e.g., K(x, y) = Ix - yl -‘) through which it 
can directly be calculated on every grid, and hence need not be transferred from the 
finest grid. An effective code of this kind for general many-body interactions has 
been developed in collaboration with Y. Accad and will be separately reported. 

For integral equations, nonuniform grids may result from the need to employ 
local refinements in those parts of the domain where the solution is less smooth. 
Multigrid techniques similar to those employed for differential equations (see [4, 
Sect. 9; or 5, Sect. 93) can then be used. 

6.3. Other Extensions and Limitations 

The method described above in terms of multi-integrations is actually applicable 
to a wide class of tasks of multiplying a vector by an n x m matrix K= [K,], when 
the result is desired to some accuracy E > 0. Thus, most of the work of multiplying 
by K can be replaced by multiplying with the smaller n x m’ matrix K’, if the 
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following holds. For each 1 <j < m there exists a subset Nj (the “coarse neigh- 
borhood” of the unknown j) and coefficients ajj. (the “coarse-to-line interpolation” 
coefficients) such that, for any i, 

cl 
Kg- c cl,i.& 6 E. (31) 

j$M, j'sN, 

Here Mi is a small subset of columns (the “fine neighborhood” of equation i), for 
which the multiplication of the vector by the ith row should still be done in terms 
of the original matrix K. This replacement of K by K' pays, of course, whenever the 
size of each Nj and Mi is small compared with m and provided m’ is substantially 
smaller than m. 

Not in all such cases, can the full efficiency, exhibited by our examples above, be 
attained. To obtain that type of efficiency we have basically assumed that 
K, = K(xi, xj), where xi E Rd and where, for any meshsize h we use (including that 
of the coarser grids) and any partial derivative 3, the size of hP8'K(x, y) decreases 
exponentially in p, except perhaps in some singular neighborhoods whose relative 
total volume is O(hp). 

In some important cases this assumption will be satisfied for the finest grid used 
in practice, but not for considerably coarser grids needed in the algorithms of 
Sections 4 and 5. This typically happens for oscillatory kernels, such as Bessel or 
Hankel functions of Ix - yl, occurring, for example, in boundary element discretiza- 
tion of highly indefinite problems, where the finest grid is just fine enough to resolve 
the oscillations. 

Often in this situation the full efficiency may still be obtained by writing the 
unknown function u in the form u = Cf=, uI(pI, where qr are some fixed oscillatory 
functions, and the u, are unknown functions which are transformed in a smoother 
way by the integral operator. The multi-integrations and the multigrid solvers 
should then be described in terms of those functions uI. Often, the number L of 
such functions should increase on coarser grids, proportionally to their meshsize. 
(For a similar device in the multigrid treatment of highly indefinite PDEs, see 
briefly in Section 4.2.2 of either [4 or 51, and in much more detail in [14].) 
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